Sabtu, 27 Maret 2021

Jenis-jenis Komponen Elektronika: Simbol, Fisik dan Fungsinya

Jenis-jenis Komponen Elektronika: Gambar Simbol, Bentuk Fisik beserta Fungsinya – Peralatan Elektronika adalah sebuah peralatan yang terbentuk dari beberapa Jenis Komponen Elektronika dan masing-masing Komponen Elektronika tersebut memiliki fungsi-fungsinya tersendiri di dalam sebuah Rangkaian Elektronika. Seiring dengan perkembangan Teknologi, komponen-komponen Elektronika makin bervariasi dan jenisnya pun bertambah banyak. Tetapi komponen-komponen dasar pembentuk sebuah peralatan Elektronika seperti Resistor, Kapasitor, Transistor, Dioda, Induktor dan IC masih tetap digunakan hingga saat ini.


Berikut ini merupakan Fungsi dan Jenis-jenis Komponen Elektronika dasar yang sering digunakan dalam Peralatan Elektronika beserta simbolnya.

A. Resistor

Resistor atau disebut juga dengan Hambatan adalah Komponen Elektronika Pasif yang berfungsi untuk menghambat dan mengatur arus listrik dalam suatu rangkaian Elektronika. Satuan Nilai Resistor atau Hambatan adalah Ohm (Ω). Nilai Resistor biasanya diwakili dengan Kode angka ataupun Gelang Warna yang terdapat di badan Resistor. Hambatan Resistor sering disebut juga dengan Resistansi atau Resistance.

Jenis-jenis Resistor diantaranya adalah :

1. Resistor yang Nilainya Tetap

2. Resistor yang Nilainya dapat diatur, Resistor Jenis ini sering disebut juga dengan Variable Resistor ataupun Potensiometer.

3. Resistor yang Nilainya dapat berubah sesuai dengan intensitas cahaya, Resistor jenis ini disebut dengan LDR atau Light Dependent Resistor

4. Resistor yang Nilainya dapat berubah sesuai dengan perubahan suhu, Resistor jenis ini disebut dengan PTC (Positive Temperature Coefficient) dan NTC (Negative Temperature Coefficient)

Gambar dan Simbol Resistor :


Gambar Jenis-jenis Resistor


B. Kapasitor (Capacitor)

Kapasitor atau disebut juga dengan Kondensator adalah Komponen Elektronika Pasif yang dapat menyimpan energi atau muatan listrik dalam sementara waktu. Fungsi-fungsi Kapasitor (Kondensator) diantaranya adalah dapat memilih gelombang radio pada rangkaian Tuner, sebagai perata arus pada rectifier dan juga sebagai Filter di dalam Rangkaian Power Supply (Catu Daya). Satuan nilai untuk Kapasitor (Kondensator) adalah Farad (F)

Jenis-jenis Kapasitor diantaranya adalah :

1. Kapasitor yang nilainya Tetap dan tidak ber-polaritas. Jika didasarkan pada bahan pembuatannya maka Kapasitor yang nilainya tetap terdiri dari Kapasitor Kertas, Kapasitor Mika, Kapasitor Polyster dan Kapasitor Keramik.

2. Kapasitor yang nilainya Tetap tetapi memiliki Polaritas Positif dan Negatif, Kapasitor tersebut adalah Kapasitor Elektrolit atau Electrolyte Condensator (ELCO) dan Kapasitor Tantalum

3. Kapasitor yang nilainya dapat diatur, Kapasitor jenis ini sering disebut dengan Variable Capasitor.

Gambar dan Simbol Kapasitor :


Gambar Jenis-jenis Kapasitor


C. Induktor (Inductor)

Induktor atau disebut juga dengan Coil (Kumparan) adalah Komponen Elektronika Pasif yang berfungsi sebagai Pengatur Frekuensi, Filter dan juga sebagai alat kopel (Penyambung). Induktor atau Coil banyak ditemukan pada Peralatan atau Rangkaian Elektronika yang berkaitan dengan Frekuensi seperti Tuner untuk pesawat Radio. Satuan Induktansi untuk Induktor adalah Henry (H).

Jenis-jenis Induktor diantaranya adalah :

1. Induktor yang nilainya tetap

2. Induktor yang nilainya dapat diatur atau sering disebut dengan Coil Variable.

Gambar dan Simbol Induktor :


Gambar Jenis-jenis Induktor (Coil)


D. Dioda (Diode)

Diode adalah Komponen Elektronika Aktif yang berfungsi untuk menghantarkan arus listrik ke satu arah dan menghambat arus listrik dari arah sebaliknya. Diode terdiri dari 2 Elektroda yaitu Anoda dan Katoda.

Berdasarkan Fungsi Dioda terdiri dari :

1. Dioda Biasa atau Dioda Penyearah yang umumnya terbuat dari Silikon dan berfungsi sebagai penyearah arus bolak balik (AC) ke arus searah (DC).

2. Dioda Zener (Zener Diode) yang berfungsi sebagai pengamanan rangkaian setelah tegangan yang ditentukan oleh Dioda Zener yang bersangkutan. Tegangan tersebut sering disebut dengan Tegangan Zener.

3. LED (Light Emitting Diode) atau Diode Emisi Cahaya yaitu Dioda yang dapat memancarkan cahaya monokromatik.

4. Dioda Foto (Photo Diode) yaitu Dioda yang peka dengan cahaya sehingga sering digunakan sebagai Sensor.

5. Dioda Shockley (SCR atau Silicon Control Rectifier) adalah Dioda yang berfungsi sebagai pengendali .

6. Dioda Laser (Laser Diode) yaitu Dioda yang dapat memancar cahaya Laser. Dioda Laser sering disingkat dengan LD.

7. Dioda Schottky adalah Dioda tegangan rendah.

8. Dioda Varaktor adalah dioda yang memiliki sifat kapasitas yang berubah-ubah sesuai dengan tegangan yang diberikan.

Gambar dan Simbol Dioda:


Gambar Jenis-jenis Dioda


E. Transistor

Transistor merupakan Komponen Elektronika Aktif yang memiliki banyak fungsi dan merupakan Komponen yang memegang peranan yang sangat penting dalam dunia Elektronik modern ini. Beberapa fungsi Transistor diantaranya adalah sebagai Penguat arus, sebagai Switch (Pemutus dan penghubung), Stabilitasi Tegangan, Modulasi Sinyal, Penyearah dan lain sebagainya. 

Transistor terdiri dari 3 Terminal (kaki) yaitu Base/Basis (B), Emitor (E) dan Collector/Kolektor (K). 

Berdasarkan strukturnya, Transistor terdiri dari 2 Tipe Struktur yaitu PNP dan NPN. 

UJT (Uni Junction Transistor), FET (Field Effect Transistor) dan MOSFET (Metal Oxide Semiconductor FET) juga merupakan keluarga dari Transistor.

Gambar dan Simbol Transistor :


Gambar Jenis-Jenis Transistor


F. IC (Integrated Circuit)

IC (Integrated Circuit) adalah Komponen Elektronika Aktif yang terdiri dari gabungan ratusan bahkan jutaan Transistor, Resistor dan komponen lainnya yang diintegrasi menjadi sebuah Rangkaian Elektronika dalam sebuah kemasan kecil. Bentuk IC (Integrated Circuit) juga bermacam-macam, mulai dari yang berkaki 3 (tiga) hingga ratusan kaki (terminal). Fungsi IC juga beraneka ragam, mulai dari penguat, Switching, pengontrol hingga media penyimpanan. Pada umumnya, IC adalah Komponen Elektronika dipergunakan sebagai Otak dalam sebuah Peralatan Elektronika. IC merupakan komponen Semi konduktor yang sangat sensitif terhadap ESD (Electro Static Discharge).

Sebagai Contoh, IC yang berfungsi sebagai Otak pada sebuah Komputer yang disebut sebagai Microprocessor terdiri dari 16 juta Transistor dan jumlah tersebut belum lagi termasuk komponen-komponen Elektronika lainnya.

Gambar dan Simbol IC (Integrated Circuit) :


Jenis-jenis IC (Integrated Circuit)


G. Saklar (Switch)

Saklar adalah Komponen yang digunakan untuk menghubungkan dan memutuskan aliran listrik. Dalam Rangkaian Elektronika, Saklar sering digunakan sebagai ON/OFF dalam peralatan Elektronika.

Gambar dan Simbol Saklar (Switch) :


Gambar Jenis-jenis Saklar (Switch)


Editor : Rudy Hermawan

Link Sumber Artikel dari:

https://teknikelektronika.com/jenis-jenis-komponen-elektronika-beserta-fungsi-dan-simbolnya/

Rabu, 24 Maret 2021

Rangkaian Adder (Penjumlah) : Half Adder , Full Adder dan Ripple Carry Adder

Rangkaian Adder (Penjumlah) :  Half Adder , Full Adder dan Ripple Carry Adder

Rangkaian Adder (penjumlah) adalah rangkaian elektronika digital yang digunakan untuk menjumlahkan dua buah angka (dalam sistem bilangan biner), sementara itu di dalam komputer rangkaian adder terdapat pada mikroprosesor dalam blok ALU (Arithmetic Logic Unit). 

Sistem bilangan yang digunakan dalam rangkaian adder adalah :

Sistem bilangan biner (memiliki base/radix 2)

Sistem bilangan oktal (memiliki base/radix 8)

Sistem bilangan Desimal (memiliki base/radix 10)

Sistem bilangan Hexadesimal (memiliki base/radix 16)

Namun, diantara ketiga sistem tersebut yang paling mendasar adalah sistem bilangan biner, sementara itu untuk menerapkan nilai negatif, maka digunakanlah sistem bilangan complement. BCD (binary-coded decimal).


Rangkaian Half Adder


Half adder adalah suatu rangkaian penjumlah system bilangan biner yang paling sederhana. Rangkaian ini hanya dapat digunakan untuk operasi penjumlahan data bilangan biner sampai 1 bit saja. 

Rangkaian half adder mempunyai 2 masukan dan 2 keluaran yaitu Summary out (Sum) dan Carry out (Carry).

Rangkaian half adder merupakan dasar bilangan biner yang masing-masing hanya terdiri dari satu bit, oleh karena itu dinamakan penjumlah tak lengkap. 

1. Jika A=0 dan B=0 dijumlahkan, hasilnya S (Sum) = 0. Dengan nilai pindahan Co (Carry Out) = 0

2. Jika A=0 dan B=1 atau A=1 dan B=0 dijumlahkan, hasilnya S (Sum) = 1. Dengan nilai pindahan Co  = 0

3. Jika A=1 dan B=1 dijumlahkan, hasilnya S (Sum) = 0. Dengan nilai pindahan Co (Carry Out) = 1. 


Operasi dari Half Adder dapat ditunjukkan pada Tabel Kebenaran berikut :

Dengan demikian, Half Adder memiliki dua masukan (A dan B), dan dua keluaran (S dan Co). 


Rangkaian Full Adder 

Rangkaian Full-Adder, pada prinsipnya bekerja seperti Half-Adder, tetapi mampu menampung bilangan Carry dari hasil penjumlahan sebelumnya. Jadi jumlah inputnya ada 3: A, B dan Ci, sementara bagian output ada 2: S dan Co. Ci ini dipakai untuk menampung bit Carry dari penjumlahan sebelumnya. 


Tabel Kebenaran Full Adder :


Rangkaian Ripple Carry Adder


Rangkaian Ripple Adder adalah rangkaian yang dibentuk dari susunan Full Adder, maupun gabungan Half Adder dan Full Adder, sehingga membentuk rangkaian penjumlah lanjut, ingat, baik Full Adder maupun Half Adder berjalan dalam aritmatika binary per bit. Untuk menghasilkan penghitungan nibble (4 bit) atau byte (8 bit) dibutuhkan ripple Carry Adder.

Jika penyusun Ripple Carry Adder menggunakan Half Adder, maka dipastikan Half Adder berada pada posisi penjumlah pertama, karena tidak memiliki input carry. Carry out dari setiap siklus dijadikan sebagai Carry in siklus berikutnya.


RANGKAIAN PRAKTEK

Pembuktian Tabel Kebenaran Rangkaian Half Adder dan Full Adder

1. Rangkaian Hal Adder:


2. Rangkaian Full Adder:


Oleh: Rudy Hermawan ; TAV & MM di SMKN 3 Kuningan

Jumat, 19 Maret 2021

TEORI DASAR LISTRIK

Teori Dasar Listrik, pembahasan kali ini untuk orang yang masih awam terhadap bidang kelistrikan atau sekedar mengingat kembali bagi yang pernah mempelajarinya.

1. Arus Listrik

adalah mengalirnya elektron secara terus menerus dan berkesinambungan pada konduktor akibat perbedaan jumlah elektron pada beberapa lokasi yang jumlah elektronnya tidak sama. satuan arus listrik adalah Ampere.

Arus listrik bergerak dari terminal positif (+) ke terminal negatif (-), sedangkan aliran listrik dalam kawat logam terdiri dari aliran elektron yang bergerak dari terminal negatif (-) ke terminal positif(+), arah arus listrik dianggap berlawanan dengan arah gerakan elektron.

 Gambar 1. Arah arus listrik dan arah gerakan elektron.

“1 ampere arus adalah mengalirnya elektron sebanyak 624x10^16 (6,24151 × 10^18) atau sama dengan 1 Coulumb per detik melewati suatu penampang konduktor”


Formula arus listrik adalah:

I = Q/t (ampere)

Dimana:
I = besarnya arus listrik yang mengalir, ampere
Q = Besarnya muatan listrik, coulomb
t = waktu, detik

2. Kuat Arus Listrik

Adalah arus yang tergantung pada banyak sedikitnya elektron bebas yang pindah melewati suatu penampang kawat dalam satuan waktu.

Definisi : “Ampere adalah satuan kuat arus listrik yang dapat memisahkan 1,118 milligram perak dari nitrat perak murni dalam satu detik”.


Rumus – rumus untuk menghitung banyaknya muatan listrik, kuat arus dan waktu:

Q = I x t
I  = Q/t
t  = Q/I


Dimana :
Q  = Banyaknya muatan listrik dalam satuan coulomb
I   = Kuat Arus dalam satuan Amper.
t   = waktu dalam satuan detik.

“Kuat arus listrik biasa juga disebut dengan arus listrik”

“muatan listrik memiliki muatan positip dan muatan negatif. Muatan positip dibawa oleh proton, dan muatan negatif dibawa oleh elektro. Satuan muatan ”coulomb (C)”, muatan proton +1,6 x 10^-19C, sedangkan muatan elektron -1,6x 10^-19C. Muatan yang bertanda sama saling tolak menolak, muatan bertanda berbeda saling tarik menarik”


3. Rapat Arus

Difinisi :
“rapat arus ialah besarnya arus listrik tiap-tiap mm² luas penampang kawat”.

 

 Gambar 2. Kerapatan arus listrik.

Arus listrik mengalir dalam kawat penghantar secara merata menurut luas penampangnya. Arus listrik 12 A mengalir dalam kawat berpenampang 4mm², maka kerapatan arusnya 3A/mm² (12A/4 mm²), ketika penampang penghantar mengecil 1,5mm², maka kerapatan arusnya menjadi 8A/mm² (12A/1,5 mm²).

Kerapatan arus berpengaruh pada kenaikan temperatur. Suhu penghantar dipertahankan sekitar 300°C, dimana kemampuan hantar arus kabel sudah ditetapkan dalam tabel Kemampuan Hantar Arus (KHA).

 

 Tabel 1. Kemampuan Hantar Arus (KHA)

Berdasarkan tabel KHA kabel pada tabel diatas, kabel berpenampang 4 mm², 2 inti kabel memiliki KHA 30A, memiliki kerapatan arus 8,5A/mm². Kerapatan arus berbanding terbalik dengan penampang penghantar, semakin besar penampang penghantar kerapatan arusnya mengecil.


Rumus-rumus dibawah ini untuk menghitung besarnya rapat arus, kuat arus dan penampang kawat:

J = I/A
I = J x A
A = I/J


Dimana:
J = Rapat arus [ A/mm²]
I = Kuat arus [ Amp]
A = luas penampang kawat [ mm²]


4. Tahanan dan Daya Hantar Penghantar

Penghantar dari bahan metal mudah mengalirkan arus listrik, tembaga dan aluminium memiliki daya hantar listrik yang tinggi. Bahan terdiri dari kumpulan atom, setiap atom terdiri proton dan elektron. Aliran arus listrik merupakan aliran elektron. Elektron bebas yang mengalir ini mendapat hambatan saat melewati atom sebelahnya. Akibatnya terjadi gesekan elektron denganatom dan ini menyebabkan penghantar panas. Tahanan penghantar memiliki sifat menghambat yang terjadi pada setiap bahan.


Tahanan didefinisikan sebagai berikut :

“1 Ω (satu Ohm) adalah tahanan satu kolom air raksa yang panjangnya 1063 mm dengan penampang 1 mm² pada temperatur 0° C"


Daya hantar didefinisikan sebagai berikut:

“Kemampuan penghantar arus atau daya hantar arus sedangkan penyekat atau isolasi adalah suatu bahan yang mempunyai tahanan yang besar sekali sehingga tidak mempunyai daya hantar atau daya hantarnya kecil yang berarti sangat sulit dialiri arus listrik”.


Rumus untuk menghitung besarnya tahanan listrik terhadap daya hantar arus:

R = 1/G
G = 1/R

Dimana :
R = Tahanan/resistansi [ Ω/ohm]
G = Daya hantar arus /konduktivitas [Y/mho]

Gambar 3. Resistansi Konduktor

Tahanan penghantar besarnya berbanding terbalik terhadap luas penampangnya dan juga besarnya tahanan konduktor sesuai hukum Ohm.

“Bila suatu penghantar dengan panjang l , dan diameter penampang q serta tahanan jenis ρ (rho), maka tahanan penghantar tersebut adalah” :


R = ρ x l/q

Dimana :
R = tahanan kawat [ Ω/ohm]
l = panjang kawat [meter/m] l
ρ = tahanan jenis kawat [Ωmm²/meter]
q = penampang kawat [mm²]

Faktot-faktor yang mempengaruhi nilai resistant atau tahanan, karena tahanan suatu jenis material sangat tergantung pada :

• panjang penghantar.
• luas penampang konduktor.
• jenis konduktor .
• temperatur.

"Tahanan penghantar dipengaruhi oleh temperatur, ketika temperatur meningkat ikatan atom makin meningkat akibatnya aliran elektron terhambat. Dengan demikian kenaikan temperatur menyebabkan kenaikan tahanan penghantar"


5. Potensial atau Tegangan

potensial listrik adalah fenomena berpindahnya arus listrik akibat lokasi yang berbeda potensialnya. dari hal tersebut, kita mengetahui adanya perbedaan potensial listrik yang sering disebut “potential difference atau perbedaan potensial”. satuan dari potential difference adalah Volt.


“Satu Volt adalah beda potensial antara dua titik saat melakukan usaha satu joule untuk memindahkan muatan listrik satu coulomb”

Formulasi beda potensial atau tegangan adalah:

V = W/Q [volt]

Dimana:
V = beda potensial atau tegangan, dalam volt
W = usaha, dalam newton-meter atau Nm atau joule
Q = muatan listrik, dalam coulomb


RANGKAIAN LISTRIK

Pada suatu rangkaian listrik akan mengalir arus, apabila dipenuhi syarat-syarat sebagai berikut :
1. Adanya sumber tegangan
2. Adanya alat penghubung
3. Adanya beban

  Gambar 4. Rangkaian Listrik.

Pada kondisi sakelar S terbuka maka arus tidak akan mengalir melalui beban . Apabila sakelar S ditutup maka akan mengalir arus ke beban R dan Ampere meter akan menunjuk. Dengan kata lain syarat mengalir arus pada suatu rangkaian harus tertutup.

1. Cara Pemasangan Alat Ukur.
Pemasangan alat ukur Volt meter dipasang paralel dengan sumber tegangan atau beban, karena tahanan dalam dari Volt meter sangat tinggi. Sebaliknya pemasangan alat ukur Ampere meter dipasang seri, hal inidisebabkan tahanan dalam dari Amper meter sangat kecil.

“alat ukur tegangan adalah voltmeter dan alat ukur arus listrik adalah amperemeter”

2. Hukum Ohm
Pada suatu rangkaian tertutup, Besarnya arus I berubah sebanding dengan tegangan V dan berbanding terbalik dengan beban tahanan R, atau dinyatakan dengan Rumus :

I = V/R
V = R x I
R = V/I

Dimana;
I = arus listrik, ampere
V = tegangan, volt
R = resistansi atau tahanan, ohm

• Formula untuk menghtung Daya (P), dalam satuan watt adalah:
P = I x V
P = I x I x R
P = I² x R

3. HUKUM KIRCHOFF

Pada setiap rangkaian listrik, jumlah aljabar dari arus-arus yang bertemu di satu titik adalah nol (ΣI=0).

 

 Gambar 5. loop arus“ KIRCHOFF “

Jadi:
I1 + (-I2) + (-I3) + I4 + (-I5 ) = 0
I1 + I4 = I2 + I3 + I5

Demikian pembahasan tentang Teori Dasar Listrik, Semoga bermanfaat,

Ditulis ulang oleh: Rudy Hermawan

Link Sumber: http://dunia-listrik.blogspot.com/2009/01/teori-dasar-listrik.html

Jumat, 12 Maret 2021

Soal Penilaian Tengah Semester (PTS) Pelajaran SISTEM KOMPUTER

Soal Penilaian Tengah Semester (PTS) Pelajaran SISTEM KOMPUTER
Kelas X Multimedia ; Semester Genap TP. 2020 – 2021

Petunjuk:
a. Jawab Soal PG dibawah ini di buku Catatan masing-masing
b. Tulis option Jawabannya saja
c. Foto Jawaban tersebut, kirim ke Classroom

Soal:
1. Rangkaian elektronik yang bekerja melakukan perhitungan penjumlahan penuh dari dua buah bilangan biner yang masing-masing terdiri dari satu bit adalah
a. Half Adder
b. Full Adder
c. Pararel Adder
d. Arithmetic Adder
e. Adder

2. Suatu rangkaian penjumlahan sistem bilangan biner yang paling sederhana adalah
a. Half Adder
b. Full Adder
c. Pararel Adder
d. Arithmetic Adder
e. Adder

3. Gambar dibawah ini merupakan simbol dari gerbang

a. NAND
b. NOT
c. EX-NOR
d. OR
e. NOR

4. Gambar dibawah ini merupakan simbol dari gerbang

a. NAND
b. AND
c. OR
d. NOT
e. NOR

5. Gambar dibawah ini merupakan simbol dari gerbang
 
a. NAND
b. EX-NOT
c. EX-NOR
d. OR
e. EX-OR

6. Gerbang NAND merupakan kombinasi dari gerbang
a. AND dan NOT
b. AND dan NOR
c. AND dan AND
d. AND dan OR
e. AND dan NAND

7. Rangkaian-rangkaian apa saja yang dipelajari dalam sistem computer
a. Multiplexer, Decoder, Flip-flop, Counter
b. Multitester, Decoder, Flip-flop, Counter
c. Multitasking, Decoder, Flip-flop, Counter
d. Multiguna, Decoder, Flip-flop, Counter
e. Multilevel, Decoder, Flip-flop, Counter

8. Alat / rangkaian digital yang berfungsi menghitung atau mencacah banyaknya denyut jam sistem atau juga berfungsi sebagai pembagi Frekuensi disebut
a. Flip-flop
b. Multiplexer
c. Register
d. Decoder
e. Counter

9. Dibawah ini yang bukan merupakan struktur utama di dalam sebuah komputer adalah 
a. CPU
b. Network
c. Memori
d. Input Device
e. Output Device

10. Yang berfungsi untuk membentuk fungsi pengolahan data komputer adalah 
a. Program Control Unit
b. UPS
c. Arithmetic Logic Unit
d. CPU
e. Monitor

11. Alat yang digunakan untuk memasukkan perintah ke dalam komputer dengan cara menggesernya adalah
a. Keyboard
b. Scanner
c. Printer
d. Monitor
e. Mouse

12. Yang bukan merupakan fungsi utama komputer adalah
a. Pengolahan data
b. Pengolahan data
c. Control
d. Penyimpanan data
e. Pemindahan data

13. Penemu dari Arsitektur Von Noumann adalah
a. Charles Babage
b. Jhon Von Noumann
c. Larry Page
d. Leonarft Kleinrock
e. Tim Berners Lee

14. Arsitektur mesin komputer Von Noumann diciptakan pada tahun
a. 1950
b. 1920
c. 1940
d. 1910
e. 1930

15. Berikut ini yang termasuk kedalam bagian utama dari Arsitektur Von Noumann adalah
a. Harddisk
b. Arithmetic Logic Unit
c. Processor
d. RAM
e. PCI

16. Dibawah ini yang merupakan perangkat kecil yang dapat membaca dan menulis dari bagian piringan adalah
a. Disket
b. Platter
c. CPU
d. Head
e. Track

17. Yang bukan termasuk dari jenis-jenis Optical Disc adalah
a. AM Disc
b. Blu – Ray
c. CD -R
d. CD +R
e. DVD

18. Kepanjangan dari CD ROM adalah
a. Compact Disc Random Only Memori
b. Compact Disc Read Only Memori
c. Compact Disc Random Once Memori
d. Compact Disc Read Once Memori
e. Compact Disc Reading Only Memori

19. Dibawah ini yang termasuk dari jenis-jenis Magnetic Tape adalah
a. dvd player, catriage tape dan tape recorder
b. tape recorder, catriage tape dan reel to reel tape
c. reel to reel tape, catriage tape dan cassette tape
d. reel to reel tape, tape recorder dan vcd player
e. reel to reel tape, tape recorder dan DVR

20. Memori yang dapat diakses langsung oleh processor adalah
a. Inboard
b. Mainboard
c. Matherboard 
d. Blackboard
e. Outboard

21. Dibawah ini yang tidak termasuk macam-macam dari RAM adalah
a. SDRAM
b. SERAM
c. SRAM
d. DDRAM
e. RDRAM

22. Memori yang hanya bias dibaca data / programnya adalah
a. ROM
b. RAM
c. DDRAM
d. SDRAM
e. RDRAM

23. Satuan memori yang paling kecil yaitu 
a. Kilobyte
b. Megabyte
c. Gigabyte
d. Terabyte
e. Heksabyte

24. Apakah kepanjangan dari ROM
a. Real On Memory
b. Read Only Memori
c. Read Online Memori
d. Random Acces Memori
e. Random On Memori

25. Jenis memori yang program atau data yang bersifat permanen adalah
a. ROM
b. RAM
c. DDRAM
d. SDRAM
e. RDRAM

26. Sistem Komputer secara Hardware terdiri dari...
a. Input – Data – Program
b. Data – Proses – Otuput
c. Input – Proses – Output
d. Input – Program – Output
e. Program – Proses – Output

27. Secara Perangkat Lunak / Software, Sistem Komputer terdiri dari...
a. Sistem Operasi – Program Aplikasi – Sistem Tool
b. Program – Aplikasi - Tool
c. Sistem Operasi – Data - Program
d. Data – Program - Tool
e. Program – Data – Aplikasi

28. Perangkat penyimpanan (Storage) yang bersipat permanen adalah
a. RAM
b. CPU
c. Harddisk
d. Printer
e. Monitor

29. Sistem Operasi yang banyak digunakan pada komputer, kecuali
a. Windows 7 32-bit
b. Windows 7 64-bit
c. Windows 10 32-bit
d. Windows 10 64-bit
e. Windows Explorer

30. Sistem komputer ketika beroperasi pada bagian proses terdiri dari
a. Keyboard, mouse, dan monitor
b. Procesor, Ram dan Harddisk
c. Mouse, Procesor, dan Harddisk
d. Keyboard, Ram dan Harddisk
e. Keyboard, Mouse, dan harddisk

Kuningan, 3 Maret 2021
Rudy Hermawan